我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|本期目录/Table of Contents|

 人工智能赋能心理健康服务:突破与挑战(PDF)

《心理学探新》[ISSN:1003-5184/CN:36-1228/B]

期数:
 2025年05期
页码:
 387-395
栏目:
 
出版日期:
 2025-10-25

文章信息/Info

Title:
 Artificial Intelligence Empowers Mental Health Services:Breakthroughs and Challenges
文章编号:
1003-5184(2025)05-0387-09
作者:
 桂丹妮1张帆2王益文1
 (1.福州大学经济与管理学院,福州 350108; 2.山东中医药高等专科学校,烟台 264100)
Author(s):
 Gui Danni1Zhang Fan2Wang Yiwen1
 (1.School of Economics and Management,Fuzhou University,Fuzhou 350108; 2.Shandong College of Traditional Chinese Medicine,Yantai 264100)
关键词:
 人工智能 心理健康 服务困境 数智化 技术赋能
Keywords:
 artificial intelligence mental health service dilemmas digital intelligence technology enablement
分类号:
 B848
DOI:
 -
文献标识码:
 A
摘要:
 在心理健康意识提升与服务需求激增的双重背景下,传统心理服务体系正面临着专业人力短缺、时空限制与资源不均等多重困境,制约服务的可及性与可持续性。人工智能(Artificial intelligence)的发展为缓解上述困境提供新的契机。通过梳理当前人工智能技术在抑郁、焦虑、睡眠障碍和自杀等典型心理健康问题中的关键应用,本文深入分析了其在缓解传统服务局限性方面的潜力。同时,还探讨了当前智能心理服务所面临的现实挑战,并展望了未来发展路径,旨在为我国心理健康服务体系的数智化转型提供理论支撑与路径参考。
Abstract:
 Against the dual background of increasing mental health awareness and surging service demand,the traditional psychological service system face multiple dilemmas,such as professional workforce shortages,spatiotemporal limitations,and inequitable resource distribution,which constrain the accessibility and sustainability of services.The development of artificial intelligence(AI)provides a new opportunity to alleviate these difficulties.By reviewing the key applications of current AI technology in typical mental health problems such as depression,anxiety,sleep disorders and suicide,this paper analyzes its potential in alleviating the limitations of traditional services.At the same time,this paper also discusses the current challenges faced by AI psychological services and explores future development pathways,aiming to provide theoretical support and actionable insights for the transformation of China’s mental health service system into digital intelligence.

参考文献/References

 傅小兰,张侃,陈雪峰,陈祉妍.(2023).中国国民心理健康发展报告(2021~2022).社会科学文献出版社.
国家卫生健康委员会.(2024).2023中国卫生健康统计年鉴.北京:中国协和医科大学出版社.
蒋长好,蒋现新,黄辰,钟晓珂.(2024).人工智能应用于老年人睡眠障碍的诊断与干预:基于ICF的Scoping综述.中国康复理论与实践,30(8),922-929.
李科生,念靖晴,李琦,杨超,邓巍.(2019).“互联网+”心理平台:大数据时代心理健康循证实践的新途径.中国临床心理学杂志,27(1),210-214,205.
李瑶,杨琳.(2022).人工智能应用于心理健康服务的相关问题思考.医学与哲学,43(5),49-54.
刘珂,刘盾,孙扬,沈蓉萍.(2025).面向在线医疗平台的医生推荐方法.智能系统学报,20(1),206-218.
刘兴云,刘晓倩,向媛媛,朱廷劭.(2019).人工智能大数据之于心理学.科技导报,37(21),105-109.
王俊秀,张衍,李延泽,等.(2025).中国睡眠研究报告(2025).社会科学文献出版社.
吴腾.(2025).生成式人工智能技术赋能智慧医疗建设的风险与规制.医学与社会,38(3),9-16.
杨芳,李欣怡,何田玉,杨冰香,黄智生,王晓琴,等.(2022).微博高自杀风险用户的自杀方式意向及自杀意念原因.中国心理卫生杂志,36(10),851-855.
杨思源,郭丽敏,贾媛,吴茜,孟繁洁.(2020).社交机器人干预对老年人心理健康影响的Meta分析.中国老年学杂志,40(18),3919-3923.
袁璠,喻思红,杨冰香,黄智生,阮娟.(2020).人工智能技术在抑郁及自杀管理中的应用.中国全科医学,23(26),3253-3257.
章彦博,黄峰,莫柳铃,刘晓倩,朱廷劭.(2025).基于大语言模型的自杀意念文本数据增强与识别技术.心理学报,57(6),987-1000.
Allam,H.,Davison,C.,Kalota,F.,Lazaros,E.,& Hua,D.V.(2025).AI-Driven mental health surveillance:Identifying suicidal ideation through machine learning techniques.Big Data and Cognitive Computing,9(1),16.
Banerjee,A.,Maji,D.,Datta,R.,Barman,S.,Samanta,D.,& Chattopadhyay,S.(2022).Shubhchintak:An efficient remote health monitoring approach for elderly people.Multimedia Tools and Applications,81(26),37137-37163.
Browning,M.,Kingslake,J.,Dourish,C.T.,Goodwin,G.M.,Harmer,C.J.,& Dawson,G.R.(2019).Predicting treatment response to antidepressant medication using early changes in emotional processing.European Neuropsychopharmacology,29(1),66-75.
Chadaga,K.,Prabhu,S.,Sampathila,N.,et al.(2024).SADXAI:Predicting social anxiety disorder using multiple interpretable artificial intelligence techniques.SLAS Technology,29(2),100129.
Chen,D.,Wang,X.,Voon,V.,et al.(2023).Neurophysiological stratification of major depressive disorder by distinct trajectories.Nature Mental Health,1(11),863-875.
Chen,Q.,Zhang-James,Y.,Barnett,E.J.,et al.(2020).Predicting suicide attempt or suicide death following a visit to psychiatric specialty care:A machine learning study using Swedish national registry data.PLoS Medicine,17(11),e1003416.
Cho,E.,Kim,S.,Heo,S.J.,et al.(2023).Machine learning-based predictive models for the occurrence of behavioral and psychological symptoms of dementia:Model development and validation.Scientific Reports,13(1),8073.
Fitzpatrick,K.K.,Darcy,A.,& Vierhile,M.(2017).Deliveringcognitive behavior therapy to young adults with symptoms of depression and anxiety using a fully automated conversational agent(Woebot):A randomized controlled trial.JMIR Mental Health,4(2),e19.
Haenlein,M.,& Kaplan,A.(2019).Abrief history of artificial intelligence:On the past,present,and future of artificial intelligence. California Management Review,61(4),5-14.
Hammelrath,L.,Hilbert,K.,Heinrich,M.,Zagorscak,P.,& Knaevelsrud,C.(2023).Select or adjust?How information from early treatment stages boosts the prediction of non-response in internet-based depression treatment.Psychological Medicine,54,1641-1650.
Han,J.(2024).Development of an AI-based suicide ideation prediction model for people with disabilities.Life,14(11),1372.
Heinz,M.V.,Mackin,D.M.,Trudeau,B.M.,et al.(2025).Randomized trial of a generative AI chatbot for mental health treatment.NEJM AI,2(4),1-14.
Huang,Y.,Wang,Y.,Wang,H.,et al.(2019).Prevalence of mental disorders in China:A cross-sectional epidemiological study.Lancet Psychiatry,6(3),211-224.
Institute of Health Metrics and Evaluation.(2021).Global Health Data Exchange(GHDx).Http://ghdx.healthdata.org
Jacobson,N.C.,Summers,B.,& Wilhelm,S.(2020).Digitalbiomarkers of social anxiety severity:Digital phenotyping using passive smartphone sensors.Journal of Medical Internet Research,22(5),e16875.
Jiang,J.,Kahai,S.,& Yang,M.(2022).Who needs explanation and when?Juggling explainable AI and user epistemic uncertainty.International Journal of Human-Computer Studies,165,102839.
Kelloway,E.K.,Dimoff,J.K.,& Gilbert,S.(2023).Mentalhealth in the workplace.Annual Review of Organizational Psychology and Organizational Behavior,10,363-387.
Kishimoto,T.,Hao,X.,Chang,T.,& Luo,Z.(2025).Single online self-compassion writing intervention reduces anxiety:With the feedback of ChatGPT.Internet Interventions,39,100810.
Klos,M.C.,Escoredo,M.,Joerin,A.,Lemos,V.N.,Rauws,M.,& Bunge,E.L.(2021).Artificial intelligence-based chatbot for anxiety and depression in university students:Pilot randomized controlled trial.JMIR Formative Research,5(8),e20678.
Lau,Y.,Ang,W.H.D.,Ang,W.W.,Pang,P.C.I.,Wong,S.H.,& Chan,K.S.(2025).Artificialintelligence-based psychotherapeutic intervention on psychological outcomes:A meta-analysis and meta-regression.Depression and Anxiety,(1),8930012.
Lee,Y.,Kim,I.,Lee,S.,& Yu,S.(2024).Information andcommunication technology-based application for cognitive behavioral therapy among community-dwelling older adults with insomnia:Development and validation study.Healthcare,12(1),106.
Levkovich,I.,& Elyoseph,Z.(2023).Suiciderisk assessments through the eyes of ChatGPT-3.5 versus ChatGPT-4:Vignette study.JMIR Ment Health,10,e51232.
Li,M.,Wang,Y.,Yang,C.,Lu,Z.,& Chen,J.(2024).Automaticdiagnosis of depression based on facial expression information and deep convolutional neural network.IEEE Transactions on Computational Social Systems,11(5),5728-5739.
Linardon,J.,Torous,J.,Firth,J.,Cuijpers,P.,Messer,M.,& Fuller-Tyszkiewicz,M.(2024).Current evidence on the efficacy of mental health smartphone apps for symptoms of depression and anxiety.A meta-analysis of 176 randomized controlled trials.World Psychiatry,23(1),139-149.
Maeda,E.,Miyata,A.,Boivin,J.,et al.(2020).Promoting fertility awareness and preconception health using a chatbot:A randomized controlled trial.Reproductive Biomedicine Online,41(6),1133-1143.
Maples,B.,Cerit,M.,Vishwanath,A.,& Pea,R.(2024).Loneliness and suicide mitigation for students using GPT3-enabled chatbots.Mental Health Research,3(1),4.
Matsushima,T.,Yoshinaga,K.,Wakasugi,N.,Togo,H.,& Hanakawa,T.(2024).Functional connectivity-based classification of rapid eye movement sleep behavior disorder.Sleep Medicine,115,5-13.
Molnár,V.,Kunos,L.,Tamás,L.,& Lakner,Z.(2023).Evaluation of theapplicability of artificial intelligence for the prediction of obstructive sleep apnoea.Applied Science,13(7),4231.
Mouchabac,S.,Leray,P.,Adrien,V.,Gollier-Briant,F.,& Bonnot,O.(2021).Prevention ofsuicidal relapses in adolescents with a smartphone application:Bayesian network analysis of a preclinical trial using in silico patient simulations.Journal of Medical Internet Research,23(9),e24560.
Naiseh,M.,Al-Thani,D.,Jiang,N.,& Ali,R.(2023).How the different explanation classes impact trust calibration:The case of clinical decision support systems.International Journal of Human-Computer Studies,169,102941.
Qiao,D.,Wu,S.,Xiang,L.,& Zhang,N.(2024).Association of residential environment with depression and anxiety symptoms among older adults in China:A cross-sectional population-based study.Building and Environment,257,111535.
Sabour,S.,Zhang,W.,Xiao,X.,et al.(2023).A chatbot for mental health support:Exploring the impact of Emohaa on reducing mental distress in China.Frontiers in Digital Health,5,1133987.
Sadeh-Sharvit,S.,Camp,T.D.,Horton,S.E.,et al.(2023).Effects of an artificial intelligence platform for behavioral interventions on depression and anxiety symptoms:Randomized clinical trial.Journal of Medical Internet Research,25,e46781.
Tejaswini,V.,Babu,K.S.,& Sahoo,B.(2024).Depressiondetection from social media text analysis using natural language processing techniques and hybrid deep learning model.ACM Transactions on Asian and Low-Resource Language Information Processing,23(1),1-20.
Thakkar,A.,Gupta,A.,& De Sousa,A.(2024).Artificial intelligence in positive mental health:A narrative review.Frontiers in Digital Health,6,1280235.
Tutun,S.,Johnson,M.E.,Ahmed,A.,et al.(2023).An AI-based decision support system for predicting mental health disorders.Information Systems Frontiers,25(3),1261-1276.
Ustün,T.B.,Ayuso-Mateos,J.L.,Chatterji,S.,Mathers,C.,& Murray,C.J.(2004).Global burden of depressive disorders in the year 2000.The British Journal of Psychiatry:The Journal of Mental Science,184,386-392.
World Economic Forum.(2022).The Global Risks Report 2022.
Xu,Z.,Gahr,M.,Xiang,Y.,Kingdon,D.,Rüsch,N.,& Wang,G.(2022).The state of mental health care in China.Asian Journal of Psychiatry,69,102975.
Yousufi,M.,Damaevicˇius,R.,& Maskeliūnas,R.(2024).Multimodalfusion of EEG and audio spectrogram for major depressive disorder recognition using modified DenseNet121.Brain Sciences,14(10),1018.

备注/Memo

备注/Memo:
 通信作者:王益文,E-mail:wangeven@126.com。
更新日期/Last Update:  2025-10-20