我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|本期目录/Table of Contents|

 基于模型聚类与基于距离聚类在表现标准设定中的比较研究(PDF)

《心理学探新》[ISSN:1003-5184/CN:36-1228/B]

期数:
 2025年06期
页码:
 564-574
栏目:
 
出版日期:
 2025-12-30

文章信息/Info

Title:
 A Comparative Study of Model-Based and Distance-Based Clustering in Performance Standard Setting
文章编号:
1003-5184(2025)06-0564-11
作者:
 梁正妍1李 浩2张 潮2张敏强2
 (1.广东技术师范大学教育科学学院,广州 510665; 2.华南师范大学心理学院,广州 510631)
Author(s):
 Liang Zhengyan1Li Hao2Zhang Chao2Zhang Minqiang2
 (1.School of Education Science,Guangdong Polytechnic Normal University,Guangzhou 510665; 2.School of Psycholog,South China Normal University,Guangzhou 510631)
关键词:
 表现标准设定 混合题型测验 KAMILA聚类 Modha-Spangler聚类 基于模型的聚类
Keywords:
 performance standard setting mixed-format tests KAMILA clustering Modha-Spangler clustering Model-based clustering
分类号:
 B841.2
DOI:
 -
文献标识码:
 A
摘要:
 传统表现标准设定方法(如Angoff法)依赖专家主观判断,在结构复杂的混合题型测验中易受质疑。本研究比较三种聚类方法——基于模型聚类、Modha-Spangler聚类与KAMILA聚类在混合题型测验中的标准设定效果。模拟研究表明,类别概率与类间距对分类准确率有显著影响,Modha-Spangler和KAMILA方法对类间距变化敏感,而基于模型的方法在小类间距且分布满足假定时更具适应性。实证研究显示,KAMILA聚类在组内同质性和临界分数可解释性方面表现最优。建议在混合题型测验中优先采用KAMILA聚类,以提升标准设定的客观性与稳健性。
Abstract:
 Traditional performance standard-setting methods(e.g.,the Angoff method)rely heavily on subjective expert judgments,which often raises concerns when applied to tests with complex structures and mixed item types.This study compares the effectiveness of three clustering approaches—Model-based clustering,Modha-Spangler clusteringand KAMILA clustering—in performance standard setting for mixed-format tests.Simulation results indicate that both categorical probability and inter-class distance significantly affect classification accuracy.While Modha-Spangler and KAMILA methods are sensitive to changes in inter-class distance,the Model-based approach shows greater adaptability when the class distance is small and distributional assumptions are met.Empirical analysis further demonstrates that KAMILA clustering outperforms the others in terms of within-class homogeneity and the interpretability of cut-off scores.It is recommended that KAMILA clustering be prioritized in mixed-format testing contexts to enhance the objectivity and robustness of performance standard setting.

参考文献/References

 李珍,辛涛,陈平.(2010).标准设定:步骤、方法与评价指标.考试研究,6(2),83-95.
梁正妍.(2023).标准与常模并存的表现标准研究:基于KAMILA聚类与潜变量建模方法(博士学位论文).华南师范大学,广州
梁正妍,张敏强.(2024).促进教育测量模型研发护航高考改革:标准参照与常模参照并存的教育测量模型探究.浙江考试,(10),11-14.
卢燕,张颖.(2010).使用聚类分析验证Angoff专家判断法有效性的研究:以医师资格考试医学综合笔试临床执业类别考试为例.中国考试,(5),18-22.https://doi.org/10.19360/j.cnki.11-3303/g4.2010.05.003.
汪存友,余嘉元.(2010).标准参照测验中标准设定的聚类分析法.南京师大学报(社会科学版),(1),103-108.
温红博,刘先伟,姜有祥.(2024).K-means聚类方法在中考标准设定中的信度分析.中国考试,(8),69-78.https://doi.org/10.19360/j.cnki.11-3303/g4.2024.08.008.
杨观惠,王晓慧.(2023).基于IRT框架采用Angoff法进行合格标准设置的探索.考试研究,19(4),59-66.
张敏强,梁正妍,姚敏.(2025).破解中国高考复杂困局:教育测量学创新与协同改革路径.教育与考试,(4),5-10.https://doi.org/10.16391/j.cnki.jyks.2025.04.002.
Angoff,W.H.(1971).Scales,norms,and equivalent scores.In R.L.Thorndike(Ed.),Educational measurement(2nd ed.,pp.508-600).Washington,DC:American Council on Education.
Ahmad,A.,& Khan,S.S.(2018).Survey of State-of-the-Art Mixed Data Clustering Algorithms.IEEE Access,7,31883-31902.https://doi.org/10.1109/ACCESS.2019.2903568.
Brown,R.S.(2007).Using latent class analysis to set academic performance standards.Educational Assessment,12(3-4),283-301.https://doi.org/10.1080/10627190701578321
Binici,S.,& Cuhadar,I.(2022).Validating Performance Standards via Latent Class Analysis.Journal of Educational Measurement,59(4),502-516.https://doi.org/10.1111/jedm.12325
Brusco,M.J.,Shireman,E.,& Steinley,D.(2017).A comparison of latent class,K-means,and K-median methods for clustering dichotomous data.Psychological Methods,22(3),563-580.https://doi.org/10.1037/met0000095.
Cizek,G.J.(2012).Setting performance standards:Foundations,methods,and innovations.New York,NY:Routledge.
Chalmers,R.P.(2012).mirt:A multidimensional item response theory package for the R environment.Journal of Statistical Software,48,1-29.https://doi.org/10.18637/jss.v048.i06
Choi,Y.,Ahn,S.H.,& Kim,J.(2023).Model-Based Clustering of Mixed Data With Sparse Dependence. IEEE Access,11,75945-75954.https://doi.org/10.1109/ACCESS.2023.3296790
Dougherty,J.,Kohavi,R.,& Sahami,M.(1995).Supervised and unsupervised discretization of continuous features.In Machine Learning:Proceedings of the Twelfth International Conference(pp.194-202).Tahoe City,CA,USA:Morgan Kaufmann.
Ercikan,K.,Sehwarz,R.D.,Julian,M.W.,Burket,G.R.,Weber,M.M.,& Link,V.B.(1998).Calibration and Scoring of Tests With Multiple-Choice and Constructed-Response Item Types.Journal of Educational Measurement,35(2),137-154.https://doi.org/10.1111/j.1745-3984.1998.tb00531.x
Foss,A.,& Markatou,M.(2018).kamila:clustering mixed-type data in R and Hadoop.Journal of Statistical Software,83(13),1-44.https://doi.org/10.18637/jss.v083.i13
Foss,A.,Markatou,M.,& Ray,B.K.(2018).Distance Metrics and Clustering Methods for Mixed-type Data.International Statistical Review,87,109-180.https://doi.org/10.1111/insr.12274
Foss,A.J.E.,Markatou,M.,Ray,B.K.,& Heching,A.(2016).A semiparametric method for clustering mixed data.Machine Learning,105(3),419-458.https://doi.org/10.1007/s10994-016-5575-7
Fraley,C.,& Raftery,A.E.(2002).Model-based clustering,discriminant analysis,and density estimation.Journal of the American Statistical Association,97(458),611-631.https://doi.org/10.1198/016214502760047131
Glass,G.V.(1978).Standard and criteria. Journal of Educational Measurement,15(4),237-261.https://doi.org/10.1111/j.1745-3984.1978.tb00072.x
Henson,R.,& Templin,J.(2008,March). Implementation of standards setting for a geometry end-of-course exam.Paper presented at the annual meeting of the American Educational Research Association,New York,NY.
Hennig,C.(2015).fpc:flexible procedures for clustering(pp.1-10).https://CRAN.R-project.org/package=fpc.R packageversion 2.
Jaeger,R.M.(1989).Certification of student competence.In R.L.Linn(Ed.), Educational measurement(3rd ed.,pp.485-514).Macmillan Publishing Co,Inc; American Council on Education.
Jiao,H.,Lissitz,B.,Macready,G.,Wang,S.,& Liang,S.(2010,April).Exploring using the Mixture Rasch Model for standard setting.Paper presented at the Annual Meeting of the National Council on Measurement in Education,Denver,CO.
Kerber,R.(1992).Chimerge:discretization of numeric attributes.In Proceedings of the Tenth National Conferenceon Artificial Intelligence(pp.123-128).San Jose,CA,AAAI:AAAI Press.
Markos,A.,Moschidis,O.,& Chadjipantelis,T.(2020)Sequential dimension reduction and clustering of mixed-type data.International Journal of Data Analysis Techniques and Strategies,12(3),228-246.https://doi.org/10.1504/ijdats.2020.108043
McLachlan,G.J.,& Peel,D.(2005).Finite Mixture Models.In Wiley series in probability and statistics.Wiley.https://doi.org/10.1002/0471721182
McNicholas,P.D.(2016).Mixture Model-Based Classification.In Chapman and Hall/CRC eBooks.https://doi.org/10.1201/9781315373577
McParland,D.,& Gormley,I.C.(2016).Model based clustering for mixed data:ClustMD.Advances in Data Analysis and Classification,10,155-169.https://doi.org/10.1007/s11634-016-0238-x
Modha,D.S.,& Spangler,W.S.(2003).Feature weighting in k-means clustering.Machine Learning,52(3),217-237.https://doi.org/10.1023/A:1024016609528
Templin,J.,Cohen,A.,& Henson,R.(2008,March).Constructing tests for optimal classification in standard setting.Paper presented at the annual meeting of the National Council on Measurement in Education.New York,NY.
Templin,J.,Poggio,A.,Irwin,P.,& Henson,R.(2007,April).Latent class model based approaches to standard setting.Paper presented at the Annual Meeting of the National Council on Measurement in Education.Chicago,IL.
van de Velden,M.,Iodice D’Enza,A.,& Markos,A.(2019).Distance-based clustering of mixed data.Wiley Interdisciplinary Reviews:Computational Statistics,11(3),1456.https://doi.org/10.1002/wics.1456.

备注/Memo

备注/Memo:
 基金项目:2025年度国家社会科学基金教育学青年项目(CSA250341)。
通信作者:张敏强,E-mail:2640726401@qq.com。
更新日期/Last Update:  2025-12-30