我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|本期目录/Table of Contents|

 语义空间的研究方法(PDF)

《心理学探新》[ISSN:1003-5184/CN:36-1228/B]

期数:
 2007年27卷03期
页码:
 22
栏目:
 认知与学校心理学
出版日期:
 2007-10-20

文章信息/Info

Title:
 Research Methods in Semantic Space
作者:
 鲁忠义 孙锦绣
 河北师范大学教育学院,石家庄050091
Author(s):
 Ru ZhongyiShun Ji nxi u
 Education College ,Hebei Normal University,Shijiazhuang 050091
关键词:
 语义空间潜在语义分析语言的多维空间类比
Keywords:
 semantic space latent semantic analysis hyperspace analogue to language 8
分类号:
 B842.5
DOI:
 -
文献标识码:
 A
摘要:
 对于语义空间的研究一直是认知心理学研究的一个热点。由于对词汇语义系统的不 同观点,科学家们试图从不同的角度采用不同的方法来进行研究。目前,有代表性的语义空间研 究方法主要有两种:潜在语义分析(LSA)和语言的多维空间类比(HAL)。潜在语义分析是指利用奇 异值分解的方法来探索文章中潜在的语义关系的方法;语言的多维空间类比则是利用多维量表 (MDS)的方法来提取语义信息。
Abstract:
 The research on semantic space has always been regarded as a hot area.Because ofthe different standpoints in this area,scientists tryto adopt a variety of methods to studyit .Currently,the most influential methods in semantic space are latent semantic analysis (LSA)and hyperspace analogue to language (HAL).LSA makes use of the singular value decomposition (SVD)and HALresorts to multidi mensional scaling (MDS)to investigate the semantic si milarity relationship in alarge corpus .

参考文献/References

 1 Deerwester S,Dumais ST,Furnas G W,et al ..Indexing by la— tent semantic analysis .Journal ofthe American Societyfor Infor— mation Science ,1990,(41):391-407.
2 Landauer TK,Dumais ST.Asolutionto Plato’s problem:The la— tent semantic analysis theory of the acquisition,induction,and 7 2 representation of knowledge .Psychological Review,1997,(104): 211-240.
3 Landauer TK,Foltz P W,Laham D.An introduce to latent se— mantic analysis .Discourse Process ,1998,(25):259-284.
4 Burgess C,Cottrell G.Symposiumat the cognitive science society conference :using high -di mensional semantic spaces derived fromlarge text corpora.In:Proceedings of the Cognitive Science Society.Hillsdale ,NJ:ErlbaumPublishers ,1995.13-14.
5 Lund K,Burgess C.Producing high -di mensional semantic spaces fromlexical co -occurrence .Behavior Research Meth— ods ,Instrumentation,and Computers ,1996,(28):203-208.
6 Burgess C.Fromsi mple associations to the building blocks of language :Modeling meaning in memory with the HALmodel . Behavior Research Methods ,Instruments ,&Computers ,1998, (30):188-198.
7 Rodhe D LT,Gonnerman LM,Plaut D C.An i mproved method for deriving word meaning fromlexical co -occurrence .Cogni— tive Science ,(in press).
8 复旦大学.概率论基础.高等教育出版社,1983.184-197.
9 Rehder B,Schreiner M E,Wolfe M B,et al ..Using latent se— mantic analysis to assess knowledge :some technical considera— tions .Discourse Processes ,1998,(25):337-354.
10 刘云峰,齐欢,代建民,等.中文信息的潜在语义分析.华 南理工大学学报(自然科学版增刊),2004,(32):107-111.
11 Burgess C,Lund K.The dynamics of meaning in memory.In: Conceptual and representational change in humans and ma— chines .Lawrence ErlbaumAssociates ,2000.117-156.
12 Song D,Bruza P D,Cole R J.Concept learning and information inferencing on a high di mensional semantic space .In:ACMSI— GIR 2004Workshop on Mathematical/Formal Methods inInfor— mation Retrieval (MF/IR 2004).Sheffield ,UK,2004.
13 Burgess C.Representing and resolving semantic ambiguity:A contribution from High-di mensional memory modeling .In:On the consequences of meaning selection:Perspectives onresolv— ing lexical ambiguity.Lawrence Erlbaum Association,2002. 233-261.
14 Young F W.Multidi mensional Scaling .Encyclopedia of Statis— tical Sciences ,1985.5.
15 Wettler M,Rapp R .Computation of word associations based on the co -occurrences of words in large corpora.In:Proceedings ofthe workshop on verylarge corpora:Academic andindustrial perspectives .Columbus/Ohio ,1993.83-84.
16 French R M,Labiouse C.Four problems with extracting human semantics fromlarge text corpora.In:Proceedings of the 24th Annual Conference of the Cognitive Science Society.NJ: LEA,2002.

备注/Memo

备注/Memo:
 基金项目:国家社会科学基金(04BYY008)
更新日期/Last Update:  2009-01-17