我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|本期目录/Table of Contents|

 纳入式分类分析法在潜在剖面模型的后续多元回归中的应用(PDF)

《心理学探新》[ISSN:1003-5184/CN:36-1228/B]

期数:
 2019年01期
页码:
 40-46
栏目:
 心理统计与测量
出版日期:
 2019-01-20

文章信息/Info

Title:
 Application of Inclusive Classify-analyze Approach for Multiple Regression Subsequent to Latent Profile Model
文章编号:
1003-5184(2019)01-0040-07
作者:
 张洁婷1张敏强2焦 璨1
 (1.深圳大学心理与社会学院,深圳 518060; 2.华南师范大学心理学院,心理应用研究中心,广州 510631)
Author(s):
 Zhang Jieting1Zhang Minqiang2Jiao Can1
 (1.College of Psychology and Sociology,Shenzhen University,Shenzhen 518060; 2.Center for Studies of Psychological Application,School of Psychology,South China Normal University,Guangzhou 510631)
关键词:
 潜在剖面模型 后续分析 纳入式分类分析法 多元回归 中介 调节
Keywords:
 latent profile model subsequent analysis inclusive classify-analyze approach multiple regression mediation moderation
分类号:
 B841.2
DOI:
 -
文献标识码:
 A
摘要:
 纳入式分类分析法能克服传统的分类分析法对后续一元回归模型参数的低估,发挥潜在类别模型的后续分析简化变量间交互作用的功能。本文进一步将纳入式分类分析法拓展至潜在剖面模型后续的多元统计分析中。通过蒙特卡洛模拟实验,比较各种纳入变量的方法思路与后续分析模型在四种常见的多元回归模型中参数估计的表现。结果发现,纳入式分类分析法所需纳入的变量取决于后续分析中与因变量、潜类别变量的关系,且后续分析使用含交互作用的模型更为稳健。
Abstract:
 Inclusive classify-analyze can overcome the underestimation of simple regression parameters by the traditional classify-analyze approach in subsequent analysis of latent profile model,and manages to simplify the estimation of interaction among variables.The current study aimed to extend the inclusive approach to some multiple regression analysis subsequent to latent profile model.Monte Carlo simulation study was conducted to investigate which variables should be included in the latent profile model,and whether interaction should be considered in the subsequent analytic model.Data was generated based on regression model of a binary distal outcome to a three-profile variable and a binary predictor.Four commonly-used model scenarios were considered:multiple regression model,and regression models with moderator,mediator or both.The results confirm the necessity of adding distal outcome to the measurement model,and also suggest that,variables related to or interacted with the latent profile variable should be included in the latent profile model.Failure to include these variables would induce attenuation of the estimated effects.In addition,we found model which include interactions term is more robust in the subsequent analysis.

参考文献/References

 马文超,边玉芳,骆方.(2012).网络成瘾的潜在结构:连续的还是分类的?心理发展与教育,5,554-560. 温忠麟,叶宝娟.(2014).有调节的中介模型检验方法:竞争还是替补?心理学报,45(9),714-726. 杨晶晶,Lowenstein,A.,Jackson,T.,郑涌.(2013).代际团结潜在类别与关系质量对自陈健康及幸福感的影响.心理学报,7,811-824. 杨丽珠,马世超.(2014).初中生人格类型划分及人格类型发展特点研究.心理科学,37(6),1377-1384. 张洁婷,张敏强,黎光明.(2017).潜在剖面模型的后续分析——比较分类分析法改进后的偏差.心理学探新,37(5),434-440. Asparouhov,T.,& Muthén,B.(2014).Auxiliary variables in mixture Modeling:Three-Step approaches using Mplus.Structural Equation Modeling:A Multidisciplinary Journal,21,329-341. Asparouhov,T.,& Muthén,B.(2015).Auxiliary variables in mixture modeling:Using the BCH method in Mplus to estimate a distal outcome model and an arbitrary second model.Mplus Web Notes,(21),1-22. Bakk,Z.,Tekle,F.B.,& Vermunt,J.K.(2013).Estimating the association between latent class membership and external variables using bias-adjusted three-step approaches.Sociological Methodology,43,272-311. Bakk,Z.,Oberski,D.,& Vermunt,J.K.(2016).Relating latent class membership to continuous distal outcomes:Improving the LTB approach and a modified three-step implementation.Structural Equation Modeling,23(2),278-289. Bakk,Z.,& Vermunt,J.K.(2016).Robustness of stepwise latent class modeling with continuous distal outcomes.Structural Equation Modeling,23(1),20-31. Bray,B.C.,Lanza,S.T.,& Tan,X.(2015).Eliminating bias in classify-analyze approaches for latent class analysis.Structural Equation Modeling:A Multidisciplinary Journal,22(1),1-11. Clark,S.L.,& Muthén,B.(2009).Relating Latent Class Analysis Results to Variables not Included in the Analysis.Retrieved from https://www.statmodel.com/download/relatinglca.pdf Collins,L.,Schafer,J.,& Kam,C.(2001).A comparison of inclusive and restrictive strategies in modern missing data procedures.Psychological Methods,6(4),330-351. De Clercq,B.,Rettew,D.,Althoff,R.R.,& De Bolle,M.(2012).Childhood personality types:Vulnerability and adaptation over time.Journal of Child Psychology and Psychiatry,and Allied Disciplines,53(6),716-722. Donnellan,M.B.,& Robins,R.W.(2010).Resilient,overcontrolled,and undercontrolled personality types:Issues and controversies.Social and Personality Psychology Compass,4(11),1070-1083. Huang,D.,Brecht,M.-L.,Hara,M.,& Hser,Y.-I.(2010).Influences of a covariate on growth mixture modeling.Journal of Drug Issues,40(1),173-194. Kinnunen,M.-L.,Metsäpelto,R.-L.,Feldt,T.,Kokko,K.,Tolvanen,A.,Kinnunen,U.,… Pulkkinen,L.(2012).Personality profiles and health:Longitudinal evidence among Finnish adults.Scandinavian Journal of Psychology,53(6),512-522. Lanza,S.T.,& Rhoades,B.L.(2013).Latent class analysis:An alternative perspective on subgroup analysis in prevention and treatment.Prevention Science,14,157-168. Lanza,S.T.,Tan,X.,& Bray,B.C.(2013).Latent class analysis with distal outcomes:A flexible model-based approach.Structural Equation Modeling:A Multidisciplinary Journal,20(1),1-26. Marsh,H.W.,Lüdtke,O.,Trautwein,U.,& Morin,A.J.S.(2009).Classical latent profile analysis of academic self-concept dimensions:Synergy of person-and variable-centered approaches to theoretical models of self-concept.Structural Equation Modeling:A Multidisciplinary Journal,16,191-225. Martel,M.M.,Goth-Owens,T.,Martinez-Torteya,C.,& Nigg,J.T.(2010).A person-centered personality approach to heterogeneity in attention-deficit/ hyperactivity disorder(ADHD).Journal of Abnormal Psychology,119,186-196. Merz,E.L.,& Roesch,S.C.(2011).A latent profile analysis of the Five Factor Model of personality:Modeling trait interactions.Personality and Individual Differences,51(8),915-919. Peterson,J.,Bandeen-Roche,K.,Budtz-Jørgensen,E.,& Larsen,K.G.(2012).Predictinglatent class scores for subsequent analysis.Psychometrika,77(2),244-262. Rammstedt,B.,Riemann,R.,Angleitner,A.,& Borkenau,P.(2004).Resilients,Overcontrollers,and Undercontrollers:The replicability of the three personality prototypes across informants.European Journal of Personality,18(1),1-14. Vermunt,J.K.(2010).Latentclass modeling with covariates:Two improved three-step approaches.Political Analysis,18(4),450-469.

备注/Memo

备注/Memo:
 基金项目:国家自然科学基金资助项目(31700982),广东省哲学社会科学“十三五”规划项目(GD17YXL01),深圳市教育科学“十三五”规划招标课题(zdzz16004)。 通讯作者:张敏强,E-mail:2640726401@qq.com。
更新日期/Last Update:  2019-01-20