我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|本期目录/Table of Contents|

 多维计算机化自适应测验中项目曝光控制选题策略的比较(PDF)

《心理学探新》[ISSN:1003-5184/CN:36-1228/B]

期数:
 2019年01期
页码:
 47-56
栏目:
 心理统计与测量
出版日期:
 2019-01-20

文章信息/Info

Title:
 A Comparison Study of Item Selection Strategies with Item Exposure Controlling in MCAT
文章编号:
1003-5184(2019)01-0047-10
作者:
 毛秀珍 王娅婷 杨 睿
 (四川师范大学教育科学学院,成都 610066)
Author(s):
 Mao Xiuzhen Wang Yating Yang Rui
 (Institute of Educational Science,Sichuan Normal University,Chengdu 610066)
关键词:
 多维项目反应理论 计算机化自适应测验 选题方法 测量精度 项目曝光率
Keywords:
 multidimensional item response theory computerized adaptive testing item selection methods exposure control strategy psychometric precision
分类号:
 B841.2
DOI:
 -
文献标识码:
 A
摘要:
 在MCAT中考查四种项目选择指标在有无曝光控制条件下的选题表现。项目选择指标分别是:(1)贝叶斯的D优化方法(D-optimality)、后验期望Kullback-Leibler方法(KLP)、基于等权重复合分数的最小误差方差方法(the minimized error variance of the linear combination score with equal weight,V1)和基于最优权重复合分数的最小误差方差方法(the minimized error variance of the composite score with optimized weight,V2)。将针对认知诊断CAT项目曝光控制的的限制阈值方法(Restrictive Threshold,RT)和限制进度(Restrictive Progressive,RPG)方法、单维CAT中的最大优先指标方法(Maximum Priority Index,MPI)推广到MCAT。模拟研究表明:(1)KLP,D-优化和V1对领域分数估计准确,能力返真性比V2更好。(2)尽管V1和V2方法相比KLP和D-优化方法提高了题库利用率,但这四种选题指标都产生不均匀的项目曝光率分布。(2)三种曝光控制策略都极大地提高项目曝光均匀性,且不明显降低测量精度。(3)MPI与RPG方法在曝光控制方面表现类似,且比RT的方法表现更好。
Abstract:
 Four item selection indexes with and without exposure control are evaluated and compared in multidimensional computerized adaptive testing(CAT).The four item selection indices are D-optimality,Posterior expectation Kullback-Leibler information(KLP),the minimized error variance of the linear combination score with equal weight(V1),and the minimized error variance of the composite score with optimized weight(V2).The maximum priority index(MPI)method for unidimensional CAT and two item exposure control methods(the restrictive threshold(RT)method and restrictive progressive(RPG)method,originally proposed for cognitive diagnostic CAT)are extended to the miltidimentional CAT.The results show that:(1)KLP,D-optimality,and V1 perform well in recovering domain scores,and all outperform V2 in psychometric precision;(2)KLP,D-optimality,V1,and V2 produce an unbalanced distribution of item exposure rates,although V1 and V2 offer improved item pool usage rates;(3)all the exposure control strategies improve the exposure uniformity greatly and with very little loss in psychometric precision;(4)RPG and MPI perform similarly in exposure control,and are both better than RT.

参考文献/References

 Bloxom,B.M.,& Vale,C.D.(1987).Multidimensional adaptive testing:A procedure for sequential estimation of the posterior centriod and dispersion of theta.Paper presented at the meeting of the Psychometric society,Montreal,Canada. Bolt,D.M.,& Lall,V.F.(2003).Estimation of compensatory and noncompensatory multidimensional item response models using Markov chain Monte Carlo.Applied Psychological Measurement,27,395-414. Chang,S.W.,& Twu,B.Y.(1998).A Comparative Study of Item Exposure Control Methods in Computerized Adaptive Testing.ACT Research Report Series,98-113. Chang,H.H.,& Ying,Z.L.(1999).a-Stratified multistage computerized adaptive testing.Applied Psychological Measurement,23,211-222. Chen,S.Y.,Ankenmann,R.D.,& Spray,J.A.(2003).The relationship between item exposure and test overlap in computerized adaptive testing.Journal of Educational Measurement,40,129-145. Cheng,Y.,& Chang,H.H.(2009).The maximum priority index method for severely constrained item selection in computerized adaptive testing.British Journal of Mathematical and Statistical Psychology,62,369-383. Finkelman,M.,Nering,M.L.,& Roussos,L.A.(2009).A conditional exposure control method for multidimensional adaptive testing.Journal of Educational Measurement,46,84-103. Huebner,A.R.,Wang,C.,Quinlan,K.,& Seubert,L.(2015).Item exposure control for multidimensional computer adaptive testing under maximum likelihood and expected a posterior estimation.Behavior Research Methods,DOI 10.3758/s13428-015-0659-z. Lee,Y.H.,Ip,E.H.,& Fuh,C.D.(2008).A strategy for controlling item exposure in multidimensional computerized adaptive testing.Educational and Psychological Measurement,68,215-232. Luecht,R.M.(1996).Multidimensional computerized adaptive testing in a certification or licensure context.Applied Psychological Measurement,20,389-404. McKinley,R.L.,& Reckase,M.D.(1982).The use of the general Rasch model with multidimensional item response data(Research Report ONR 82-1).American College Testing,Iowa City,IA. Mulder,J.,& van der Linden,W.J.(2009).Multidimensional adaptive testing with optimal design criteria.Psychometrika,74,273-296. Mulder,J.,& van der Linden,W.J.(2010).Multidimensional adaptive testing with Kullback-Leibler information item selection.In W.J.van der Linden & C.A.W.Glas(Eds.),Elements of Adaptive Testing,Statistics for Social and Behaviroal Sciences.Springer Science+Businesws Media. Segall,D.O.(1996).Multidimensional adaptive testing.Psychometrika,61,331-354. Stocking,M.L.(1994).Three practical issues for modern adaptive testing item pools(ETS Research Report No.94-5).Princeton,NJ:Educational Testing Service. Stocking,M.L.,& Lewis,C.(1998).Controlling item exposure conditional on ability in computerized adaptive testing.Journal of Educational and Behavioral Statistics,23,57-65. Sympson,J.B.,& Hetter,R.D.(1985).Controlling item-exposure rates in computerized adaptive testing.In Proceedings of the 27th annual meeting of the Military Testing Association(pp.973-977).San Diego,CA:Navy Personnel Research and Development Center. van der Linden,W.J.(1999).Multidimensional adaptive testing with a minimum error-variance criterion.Journal of Educational and Behavioral Statistics,24,398-412. van der Linden,W.J.,& Veldkamp,B.P.(2007).Conditional item exposure control in adaptive testing using item-ineligibility probabilities.Journal of Educational and Behavioral Statistics,32,398-418. Veldkamp,B.P.,& van der Linden,W.J.(2002).Multidimensional adaptive testing with constraints on test content.Psychometrika,67,575-588. Wang,C.,& Chang,H.H.(2011).Item selection in multidimensional computerized adaptive testing-gaining information from different angles.Psychometrika,76,363-384. Wang,C.,Chang,H.H.,& Boughton,K.A.(2011).Kullback-Leibler information and its applications in multidimensional adaptive testing.Psychometrika,76,13-39. Wang,C.,Chang,H.H.,& Boughton,K.A.(2013).Deriving stopping rules for multidimensional computerized adaptive testing.Applied Psychological Measurement,37(2),99-122. Wang,C.,Chang,H.H.,& Huebner,A.(2011).Restrictive stochastic item selection methods in cognitive diagnostic computerized adaptive testing.Journal of Educational Measurement,48,255-273. Wang,W.C.,& Chen,P.H.(2004).Implementation and measurement efficiency of multidimensional computerized adaptive testing.Applied Psychologica Measurement,28,295-316. Yao,L.(2010).Reporting valid and reliability overall score and domain scores.Journal of Educational Measurement,47,339-360. Yao,L.(2012).Multidimensional CAT item selection methods for domain scores and composite scores:Theory and applications.Psychometrika,77,495-523. Yao,L.(2014a).Multidimensional CAT item selection methods for domain scores and composite scores with item exposure control and content constrains.Journal of Educational Measurement,51,18-38. Yao,L.(2014b).Multidimensional item response theory for score reporting.In Y.Cheng & H.-H.Chang(Eds.),Advances in modern international testing:Transition from summative to formative assessment.Charlotte,NC:Information Age. Yao,L.,Pommerich,M.,& Segall,D.O.(2014).Using Multidimensional CAT to Administer a Short,Yet Precise,Screening Test.Applied Psychological Measurement,38,614-631. Yao,L.,& Schwarz,R.D.(2006).A multidimensional partial credit model with associated item and test statistics:An application to mixed-format tests.Applied Psychological Measurement,37,3-23.

备注/Memo

备注/Memo:
 基金项目:国家自然科学基金青年项目(31400897)。 通讯作者:毛秀珍,E-mail:maomao_wanli@163.com。
更新日期/Last Update:  2019-01-20