我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|本期目录/Table of Contents|

 补偿多维IRT模型的Q矩阵设计(PDF)

《心理学探新》[ISSN:1003-5184/CN:36-1228/B]

期数:
 2024年03期
页码:
 273-280
栏目:
 心理统计与测量
出版日期:
 2024-07-15

文章信息/Info

Title:
 The Q-matrix Design for Compensatory Multidimensional IRT Models
文章编号:
1003-5184(2024)03-0273-08
作者:
 潘世权1赵守盈12
 (1.贵州师范大学心理学院,贵阳 550025; 2.凯里学院,凯里 556011)
Author(s):
 Pan Shiquan1Zhao Shouying12
 (1.School of Psychology,Guizhou Normal University,Guiyang 550025; 2.Kaili University,Kaili 556011)
关键词:
 多维项目反应理论 Q矩阵 项目内多维 项目间多维
Keywords:
 multidimensional item response theory Q-matrix within-item multidimensionality between-item multidimensionality
分类号:
 B841.2
DOI:
 -
文献标识码:
 A
摘要:
 Q矩阵不仅可用于表示项目与各维度之间的关系,还会影响测量模型的可识别性和参数估计精度。本文通过模拟研究,考察了不同Q矩阵设计如何影响补偿多维项目反应理论模型的参数估计精度。研究结果表明:(1)项目间多维设计仅在项目参数估计上占优势;(2)在绝大多数条件下,由模型识别和测量两个维度的项目组成的Q矩阵能提供比其他设计更精确的能力参数向量估计值,同时项目参数估计的误差也在可接受范围内。
Abstract:
 The Q-matrix of multidimensional item response theory(MIRT)models is restricted to binary variables and catpures the relationship between items and demensions.Different Q-matrices can impact the model identifiability and accuracy of parameter estimates in MIRT models.Previous studies have found that items measuring one dimension tend to produce more accurate parameter estimates in compensatory MIRT models.However,items measuring more than one dimension may produce more accurate ability vector estimates because they have higher discrimination.In this article,we further investigated the effects of Q-matrix design on parameter estimates through simulation study under non-adaptive testing scenario.The simulation results showed that(1)compared to other Q-matrix designs,between-item multidimensionality design only had an advantage in item parameter estimates;(2)under almost all conditions,the Q-matrix contained both items guaranteeing model identifiability and items measuring two dimensions not only produced more accurate ability vector estimates than other Q-matrix designs,but also provided acceptable item parameters recovery.

参考文献/References

 彭亚风,罗照盛,喻晓锋,高椿雷,李喻骏.(2016).认知诊断评价中测验结构的优化设计.心理学报,48(12),1600-1611.
任赫,陈平.(2021).两种新的多维计算机化分类测验终止规则.心理学报,53(9),1044-1058.
Adams,R.J.,Wilson,M.,& Wang,W.-C.(1997).The multidimensional random coefficients multinomial logit model.Applied Psychological Measurement,21(1),1-23.
Babcock,B.(2011).Estimating a noncompensatory IRT model using Metropolis within Gibbs sampling.Applied Psychological Measurement,35(4),317-329.
Béguin,A.A.,& Glas,C.A.W.(2001).MCMC estimation and some model-fit analysis of multidimensional IRT models.Psychometrika,66(4),541-561.
Cai,L.(2010).Metropolis-Hastings Robbins-Monro algorithm for confirmatory item factor analysis.Journal of Educational and Behavioral Statistics,35(3),307-335.
Chalmers,R.P.(2012).mirt:A multidimensional item response theory package for the R environment.Journal of Statistical Software,48(6),1-29.
Chalmers,R.P.(2020).Partially and fully noncompensatory response models for dichotomous and polytomous items.Applied Psychological Measurement,44(6),415-430.
Chen,P.,& Wang,C.(2016).A new online calibration method for multidimensional computerized adaptive testing.Psychometrika,81(3),674-701.
Chen,P.,Wang,C.,Xin,T.,& Chang,H.-H.(2017).Developing new online calibration methods for multidimensional computerized adaptive testing.British Journal of Mathematical and Statistical Psychology,70(1),81-117.
Cho,A.E.,Wang,C.,Zhang,X.,& Xu,G.(2021).Gaussian variational estimation for multidimensional item response theory.British Journal of Mathematical and Statistical Psychology,74(S1),52-85.
Embretson,S.E.,& Yang,X.(2013).A multicomponent latent trait model for diagnosis.Psychometrika,78(1),14-36.
Feuerstahler,L.M.(2018).Sources of error in IRT trait estimation.Applied Psychological Measurement,42(5),359-375.
Fu,Z.,Zhang,S.,Su,Y.H.,Shi,N.,& Tao,J.(2021).A Gibbs sampler for the multidimensional four‐parameter logistic item response model via a data augmentation scheme.British Journal of Mathematical and Statistical Psychology,74(3),427-464.
Gelman,A.,& Rubin,D.B.(1992).Inference from iterative simulation using multiple sequences.Statistical Science,7(4),457-472.
Holman,R.,& Glas,C.A.(2005).Modelling non‐ignorable missing‐data mechanisms with item response theory models.British Journal of Mathematical and Statistical Psychology,58(1),1-17.
Man,K.,Harring,J.R.,Jiao,H.,& Zhan,P.(2019).Joint modeling of compensatory multidimensional item responses and response times.Applied Psychological Measurement,43(8),639-654.
Plummer,M.(2017).JAGS version 4.3.0 user manual[Computer software manual].https://sourceforge.net/pr-ojects/mcmc-jags/files/Manuals/4.x/jags_user_manual.pdf
Reckase,M.D.(2009).Multidimensional item response theory.Springer.
Reckase,M.D.,& McKinley,R.L.(1991).The discriminating power of items that measure more than one dimension.Applied Psychological Measurement,15(4),361-373.
Sun,J.,Chen,Y.,Liu,J.,Ying,Z.,& Xin,T.(2016).Latent variable selection for multidimensional item response theory models via L1 regularization.Psychometrika,81(4),921-939.
Segall,D.O.(1996).Multidimensional adaptive testing.Psychometrika,61(2),331-354.
Tatsuoka,K.K.(1985).A probabilistic model for diagnosing misconceptions by the pattern classification approach.Journal of Educational Statistics,10(1),55-73.
Ulitzsch,E.,Yildirim‐Erbasli,S.N.,Gorgun,G.,& Bulut,O.(2022).An explanatory mixture IRT model for careless and insufficient effort responding in self‐report measures.British Journal of Mathematical and Statistical Psychology,75(3),668-698.
Wang,C.(2015).On latent trait estimation in multidimensional compensatory item response models.Psychometrika,80(2),428-449.
Wang,C.,& Nydick,S.W.(2015).Comparing two algorithms for calibrating the restricted non-compensatory multidimensional IRT model.Applied Psychological Measurement,39(2),119-134.
Wang,W.-C.,Chen,P.-H.,& Cheng,Y.-Y.(2004).Improving measurement precision of test batteries using multidimensional item response models.Psychological Methods,9(1),116-136.
Xu,G.,& Zhang,S.(2016).Identifiability of diagnostic classification models.Psychometrika,81(3),625-649.
Yao,L.,& Schwarz,R.D.(2006).A multidimensional partial credit model with associated item and test statistics:An application to mixed-format tests.Applied Psychological Measurement,30(6),469-492.

备注/Memo

备注/Memo:
 基金项目:国家教育考试科研规划2021年度课题“新高考背景下高中生学业分数报告的研究”(GJK2021017)。
通信作者:赵守盈,E-mail:zhaoshouying@126.com。
更新日期/Last Update:  2024-07-10